Высшая математика для 1 курса

Алгоритм решения уравнения в полных дифференциалах

С обозначений (4) частных производных полного дифференциала функции следует, что u(x,y) мы можем найти интегрированием Эти формулы дают выбор при вычислениях, поэтому для интегрирования выбирают ту частную производную, интеграл от которой легче найти на практике. Далее второй важный момент — неопределенный интеграл представляет собой первообразную то есть «+ С», которую следует определить. Поэтому, если интегрируем частную производную M(x,y) по «икс» то сталая зависит от y и наоборот — если интегрируем N(x,y) по y то сталая зависима от «икс». Далее чтобы определить постоянную берут производную от u(x,y ) по другой переменной чем та, по которой производили интегрирование и приравнивают к второй частичной производной. В формулах это будет выглядеть следующим образом Как правило некоторые слагаемые упрощаются и получим уравнение на производную постоянной. Для первого из уравнений получим Окончательно общий интеграл после определения постоянной имеет вид

В симметричной форме получим ответ и для другого уравнения. Запись только на вид сложная, на самом деле на практике все выглядит значительно проще и понятнее. Проанализируйте следующие задачи на полные дифференциалы.

Как решать интегралы вручную (шаг за шагом):

Большинство людей раздражается начинать с вычислений интегральной функции. Но здесь мы собираемся решать интегральные примеры шаг за шагом, что поможет вам разобраться, как легко интегрировать функции! Итак, это точки, которым нужно следовать для вычисления решение интегралов онлайн:

  • Определить функцию f (x)
  • Возьмите первообразную функции
  • Вычислить верхний и нижний предел функции
  • Определите разницу между обоими пределами

Если вас интересует вычисление первообразной (неопределенного интеграла), тогда возьмите онлайн-калькулятор первообразной, который быстро решит первообразную данной функции.

Смотрит на примеры:

Пример 1:

Решить интегралы от ∫ x3 + 5x + 6 dx?

Решение:

Шаг 1:

Применяя правило функциональной мощности для интегрирования:

∫xn dx = xn + 1 / n + 1 + c

∫ x3 + 5x + 6 dx = x3 + 1/3 + 1 + 5 x1 + 1/1 + 1 + 6x + c

Шаг 2:

∫ x3 + 5x + 6 dx = x4 / 4 + 5 x2 / 2 + 6x + c

Шаг 3:

∫ x3 + 5x + 6 dx = x4 + 10×2 + 24x / 4 + c

Этот калькулятор неопределенного интеграла помогает интегрировать интеграл калькулятор функции шаг за шагом, используя формулу интегрирования.

Пример 2 (Интеграл логарифмической функции):

Вычислить ∫ ^ 1_5 xlnx dx?

Решение:

Шаг 1:

Прежде всего, разместите функции согласно правилу ILATE:

∫ ^ 1_5 lnx * x dx

Шаг 2:

Теперь используя формулу для интегрирования по частям i; e:

∫u.v dx = u∫vdx – ∫ [∫vdx d / dx u]

Шаг 3:

∫ ^ 1_5 x * lnx dx = [lnx∫xdx – ∫ [∫xdx d / dx lnx]] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – ∫ [x2 / 2 1 / x]] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – ∫ [x / 2]] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – 1 / 2∫ x] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – 1/2 x2 / 2] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – 1/4 x2] ^ 1_5

∫ ^ 1_5 x * lnx dx = [ln1 (1) 2/2 – 1/4 (1) 2] – [ln5 (5) 2/2 – 1/4 (5) 2]

∫ ^ 1_5 x * lnx dx = [0 (0) / 2 – 1/4 (1)] – [1,60 (25) / 2 – 1/4 (25)]

∫ ^ 1_5 x * lnx dx = [0 – 1/4] – [40/2 – 25/4]

∫ ^ 1_5 x * lnx dx = [- 1/4] –

∫ ^ 1_5 x * lnx dx = – 0,25 – 13,75

∫ ^ 1_5 x * lnx dx = –14

Поскольку это очень сложно для решения интегралов, когда две функции умножаются друг на друга. Для удобства просто введите функции в онлайн-калькулятор интегралов по частям, который помогает выполнять вычисления двух функций (по частям), которые точно умножаются друг на друга.

Пример 3 (Интеграл от тригонометрической функции):

Вычислить определенный интеграл для ∫sinx dx с интервалом [0, π / 2]?

Решение:

Шаг 1:

Используйте формулу для тригонометрической функции:

∫ sinx dx = -cosx + c

Шаг 2:

Вычислите верхний и нижний предел для функций f (a) и f (b) соответственно:

Поскольку a = 0 и b = π / 2

Итак, f (a) = f (0) = cos (0) = 1

f (b) = f (π / 2) = cos (π / 2) = 0

Шаг 3:

Рассчитайте разницу между верхним и нижним пределами:

f (а) – f (b) = 1 – 0

f (а) – f (b) = 1

Теперь вы можете использовать бесплатный калькулятор частичных интегралов для проверки всех этих примеров и просто добавлять значения в поля назначения для мгновенного вычисления интегралов.

Ввод функций:

Функции вводятся с использованием маленьких латинских букв: sin ; cos ; tan ; log

ВНИМАНИЕ! Аргумент функции всегда берется в скобки () , например: sin( 4 ) ; cos( x ) ; log( 4 + y ). Запись типа: sin 4 ; cos x ; log 4 + y – недопустима

Правильная запись: sin( 4 ) ; cos( x ) ; log( 4 + y ) . Если необходимо возвести функцию в степень, например: синус x и все это в квадрате, это записывается вот так: (sin( x )) ^ 2 . Если необходимо возвести в квадрат аргумент, а не функцию (т.е синус от x ^ 2 ), тогда это выглядит вот так: sin( x ^ 2) . Запись типа: sin ^ 2 x – недопустима .

Источник статьи: http://mathforyou.net/online/input/simple/

Вычисление пределов функций

Предел функции задается последовательным нажатием групповой кнопки f(x) и функциональной кнопки lim.

Примеры решений пределов:

$$\lim _{x\to -12}\left(\frac{x^3+1728}{x^2+18x+72}\right)$$ (найти предел функции)

$$\lim _{x\to 0}\left(\left(1-2x^2\right)^{\cot ^2\left(x\right)}\right)$$ (найти предел функции)

$$\lim _{x\to -1}\left(\frac{2x^2-3x-5}{1+x}\right)$$ (решить предел функции)

$$\lim _{x\to 0}\left(\frac{e^{\sin \left(4x\right)}-e^{\sin x}}{\log \left(1+4x\right)}\right)$$ (вычислить предел функции)

$$\lim _{x\to \infty }\left(\sqrt{3x^2+\sqrt{x^4+4x^3}}-2x\right)$$ (вычислить предел)

$$\lim _{x\to 1}\left(\frac{\left(2x^2+3\right)^{3x}}{2x^2-4^{\left(x+1\right)}}\right)$$ (решить предел функции)

Приоритет операций:

Для указания (или изменения) приоритета операций необходимо использовать скобки () , например: ( a + b ) / 4 – тут вначале будет произведено сложение a + b , а потом сумма разделится на 4 , тогда как без скобок: – сначала b разделится на 4 и к полученному прибавится a

ВНИМАНИЕ! В непонятных случаях лучше всегда использовать скобки для получения нужного результата, например: 2 ^ 4 ^ 3 – неясно как будет вычислено это выражение: cначала 2 ^ 4 , а затем результат в степень 3 , или сначала 4 ^ 3 = 64 , а затем 2 ^ 64 ? Поэтому, в данном случае, необходимо использовать скобки: (2 ^ 4) ^ 3 или 2 ^ (4 ^ 3) – смотря что нужно. Также распространенной ошибкой является запись вида: x ^ 3 / 4 – непонятно: вы хотите возвести x в куб и полученное выражение разделить на 4 , или хотите возвести x в степень 3 / 4 ? В последнем случае необходимо использовать скобки: x ^ (3 / 4)

Как найти первообразную и вычислить интегралы с помощью калькулятора интегралов:

Вы можете легко вычислить интеграл от определенных и неопределенных функций с помощью лучшего интегратора. Вам просто нужно следовать указанным пунктам, чтобы получить точные результаты:

Проведите по!

Входы:

  • Во-первых, введите уравнение, которое вы хотите интегрировать.
  • Затем выберите зависимую переменную, входящую в уравнение
  • Выберите на вкладке определенный или определенный интеграл онлайн
  • Если вы выбрали конкретный вариант, то вам следует ввести нижнюю и верхнюю границу или предел в предназначенное для этого поле.
  • После этого пора нажать на кнопку расчета.

Выходы:

Интегральный оценщик показывает:

  • Определенный интеграл
  • неопределенный интеграл онлайн
  • Выполните пошаговые расчеты

Программное обеспечение — основное понятие

Программное обеспечение (ПО) — составляющая часть компьютера, комплекс программ, необходимых для работы с информацией. Самое распространенное ПО — операционная система Windows.  

Программное обеспечение управляет аппаратной частью ПК, которая производит физические операции. Удобство и универсальность ПО заключается в его способности модифицироваться. Программа, способная запоминать информацию, сделала вычислительные машины гибкими и легко адаптируемыми к разным условиям работы.

Любая программа проходит 3 этапа: создание, применение и сопровождение. В процессе разработки ПО насчитывается 6 стадий:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

  • определение требований;
  • создание проекта;
  • разработка команд;
  • группировка всех компонентов;
  • проверка работоспособности (тестирование);
  • оформление сопроводительной документации.

Основные характеристики ПО:

  1. Любой процесс может быть выражен при помощи верной последовательности команд.
  2. Сложность разработки заключается в его абстрактности.
  3. Для создания нового ПО необходим компьютер с установленным программным обеспечением.
  4. Проектирование набора команд менее сложная работа, чем адаптация системы к пользователю и настройка управления.
  5. ПО — это средство для достижения цели.

Шпаргалка по работе с калькулятором.

Переменные, которые могут принимать только два значения 0 и 1 называются логическими переменными (или просто переменными). Заметим, что логическая переменная х может подразумевать под числом 0 некоторое высказывание, которое ложно, и под числом 1 высказывание, которое истинно.

Из определения логической функции следует, что функция n переменных – это отображение Bn в B, которое можно задать непосредственно таблицей, называемой таблицей истинности данной функции.

Основные функции логики – это функции двух переменных z = f(x,y).

Число этих функций равно 24 = 16. Перенумеруем и расположим их в естественном порядке.

Рассмотрим более подробно эти функции. Две из них f = 0 и f15 = 1 являются константами. Функции f3, f5, f10 и f12 являются по существу функциями одной переменной.

Наиболее важные функции двух переменных имеют специальные названия и обозначения.

1) f1 – конъюнкция (функция И)Заметим, что конъюнкция – это фактически обычное умножение (нулей и единиц). Эту функцию обозначают x&y;

2) f7 – дизъюнкция (функция или). Обозначается V.

3) f13 – импликация (следование). Обозначается ->Это очень важная функция, особенно в логике. Ее можно рассматривать следующим образом: если х = 0 (т. е. х “ложно”), то из этого факта можно вывести и “ложь”, и “истину” (и это будет правильно), если у = 1 (т. е. у “истинно”), то истина выводится и из “лжи” и из “истины”, и это тоже правильно. Только вывод “из истины ложь” является неверным. Заметим, что любая теорема всегда фактически содержит эту логическую функцию;

4) f6 – сложение по модулю 2. Обозначается знаком “+” или знаком “+” в кружке.

5) f9 – эквивалентность или подобие. Эта f9 = 1 тогда и только тогда, когда х = у. Обозначается х ~ у.

6) f14 – штрих Шеффера. Иногда эту функцию называют “не и” (так как она равна отрицанию конъюнкции). Обозначается x|y.

7) f8 – стрелка Пирса (иногда эту функцию называют штрих Лукасевича).

Три оставшиеся функции, (f2 , f4 и f11) особого обозначения не имеют.

Заметим, что часто в логике рассматриваются функции от функций, т.е. суперпозиции перечисленных выше функций. При этом последовательность действий указывается (как обычно) скобками.

Также можно скачать программу “Логический калькулятор” для Windows.

На данный момент логический калькулятор умеет выполнять следующее:

  1. Ввод и проверка переменных на корректность. Под корректностью подразумевается правильное написание букв и операций над ними
  2. Вывод таблицы истинности для выражения
  3. СКНФ и СДНФ

Инструментальное

Инструментальное ПО (системы программирования) предназначено для использования разработчиками в процессе проектирования и создания программ. 

Элементами системы программирования являются:

  1. Текстовые редакторы помогают создавать, редактировать и объединять тексты. 
  2. Транслятор преобразовывает алгоритмический язык программы в машинный (двоичные коды), создавая при этом объектный модуль. Интерпретатор осуществляет перевод построчно, не создавая объектный модуль. 
  3. Средства отладки (отладчик) обеспечивают пошаговое выполнение программ с предоставлением данных о результатах исполнения. 
  4. Библиотеки подпрограмм.

Действия над комплексными числами

Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i

Примеры операций с комплексными числами:

$$\frac{\left(1+i\right)\left(3+i\right)}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}$$ (найти разность комплексных чисел)

$$\left(1-i\right)^3+\left(1+i\right)^3$$ (найти сумму комплексных чисел)

$$\left(-2+3i\right)\left(5+4i\right)$$ (найти произведение комплексных чисел)

$$\frac{-5-6i}{-6i}$$ (найти частное комплексных чисел)

$$\left(-2+2i\right)^9$$ (выполнить возведение комплексного числа в степень)

$$\frac{\left(-7-8i\right)i^7}{\left(4-5i\right)\left(-3+i\right)}-\frac{4+4i}{-2-5i}$$ (выполнить действия над комплексными числами)

Заключительные слова:

Интегралы широко используются для улучшения архитектуры зданий, а также для мостов. В электротехнике его можно использовать для определения длины силового кабеля, необходимого для соединения двух станций, находящихся на расстоянии нескольких миль друг от друга. Этот онлайн-калькулятор интегралов лучше всего подходит для школьного образования, который легко интеграл калькулятор любой заданной функции шаг за шагом.

Other Languages: Integral Calculator, Integral Hesaplama, Kalkulator Integral, Kalkulator Integralny, Integralrechner, 積分計算, 적분계산기, Integrály Kalkulačka, Calculadora De Integral, Calcul Intégrale En Ligne, Calculadora De Integrales, Calcolatore Integrali, حساب متكامل, Integraatio Laskin, Integreret Lommeregner, Integral Kalkulator, Integralni Kalkulator, เครื่องคำนวณอินทิกรัล, Integrale Rekenmachine.

Дифференциальные уравнения первого порядка.

  • Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x). В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ . Примерами таких ОДУ являются .

    Если существуют значения аргумента x, при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

    В статье простейшие дифференциальные уравнения первого порядка. Вы можете ознакомиться с подробной теорией и посмотреть примеры решения таких ОДУ.

  • Дифференциальные уравнения с разделяющимися переменными вида или .

    Дифференциальные уравнения называют уравнениями с разделенными переменными.

    Название этого вида дифференциальных уравнений достаточно показательно: выражения, содержащие переменные x и y, разделены знаком равенства, то есть, находятся по разные стороны от него.

    Общее решение дифференциальных уравнений с разделенными переменными можно найти, проинтегрировав обе части равенства: ∫ f(y)dy = ∫ f(x)dx.

    В качестве примеров ОДУ с разделенными переменными приведем .

    Дифференциальные уравнения с разделяющимися переменными приводятся к ОДУ с разделенными переменными делением обеих частей уравнения на произведение f2(y) ⋅ g1(x). То есть, получим . Такое преобразование будет эквивалентным, если одновременно f2(y) ≠ 0 и g1(x) ≠ 0. Иначе могут потеряться некоторые решения.

    Примерами ОДУ с разделяющимися переменными являются .

    Некоторые дифференциальные уравнения можно свести к уравнениям с разделяющимися переменными с помощью замены переменных.

    Дифференциальные уравнения приводятся к ОДУ с разделяющимися переменными подстановкой z = ax+by. К примеру, уравнение с помощью подстановки z = 2x+3y приобретает вид .

    ОДУ или преобразуются к уравнениям с разделяющимися переменными с помощью замен или . Например, дифференциальное уравнение после замены принимает вид .

    Некоторые дифференциальные уравнения следует немного преобразовать, чтобы можно провести замену. К примеру, достаточно разделить на x2 или y2 числитель и знаменатель правой части дифференциального уравнения , чтобы оно соответствовало случаям или соответственно.

    Дифференциальные уравнения преобразуются к только что рассмотренным ОДУ или , если ввести новые переменные , где — решение системы линейных уравнений и провести некоторые преобразования.

    Например, дифференциальное уравнение после введения новых переменных преобразуется к виду . Проводим деление на u числителя и знаменателя правой части полученного уравнения и принимаем . В результате приходим к уравнению с разделяющимися переменными .

    В разделе дифференциальные уравнения с разделяющимися переменными подробно разобрана теория и приведены подробные решения аналогичных примеров.

  • Линейные неоднородные дифференциальные уравнения первого порядка .

    В качестве примеров линейных неоднородных дифференциальных уравнений первого порядка можно привести .

    Для решения ЛНДУ используют метод вариации произвольной постоянной. Также существует метод, основанный на представлении искомой функции y в виде произведения: y(x) = u(x)v(x).

    В статье линейные неоднородные дифференциальные уравнения первого порядка подробно изложены методы интегрирования таких ЛНДУ и приведены подробные решения примеров и задач.

  • Дифференциальное уравнение Бернулли .

    Примерами дифференциальных уравнений Бернулли являются, например, .

    Дифференциальное уравнение Бернулли сводится к линейному дифференциальному уравнению первого порядка подстановкой .

    Можно также пользоваться методом, основанным на представлении функции y как y(x) = u(x)v(x).

    В разделе дифференциальное уравнение Бернулли подробно расписаны методы нахождения решений и разобраны решения примеров и задач.

  • Уравнения в полных дифференциалах .

    Если для любых значений x и y выполняется , то этого условия необходимо и достаточно, чтобы выражение P(x, y)dx+Q(x, y)dy представляло собой полный дифференциал некоторой функции U(x, y) = 0, то есть, dU(x, y) = P(x, y)dx + Q(x, y)dy. Таким образом, задача сводится к восстановлению функции U(x, y) = 0 по ее полному дифференциалу.

    К примеру, левая часть дифференциального уравнения представляет собой полный дифференциал функции .

    Подробное описание теории и решение примеров изложены в разделе уравнения в полных дифференциалах.

Схема решения однородного дифференциального уравнения

1. Сначала нужно применить подстановку y=z*x, где z=z(x) – новая неизвестная функция (таким образом исходное уравнение сводится к дифференциальному уравнению с разделяющимися переменными. 2. Производная произведения равна y’=(z*x)’=z’*x+z*x’=z’*x+z или в дифференциалах dy=d(zx)=z*dx+x*dz. 3. Далее подставляем новую функцию у и ее производную y’ (или dy) в ДУ с разделяющимися переменными относительно x та z. 4. Решив дифференциальное уравнение с разделяющимися переменными, сделаем обратную замену y=z*x, поэтому z= y/х, и получим общее решение (общий интеграл) дифференциального уравнения.5. Если задано начальное условие y(x)=y, то находим частное решение задачи Коши. В теории все звучит легко, однако на практике не у всех так весело получается решать дифференциальные уравнения. Поэтому для углубления знаний рассмотрим распространенные примеры. На легких задачах нет особо Вас научить, поэтому сразу перейдем к более сложным.

Вычисления однородных дифференциальных уравнений первого порядка

Пример 1. Решить дифференциальное уравнениеРешение: Делим правую сторону уравнения на переменную, которая стоит множителем возле производной. В результате придем к однородного дифференциального уравнения порядка И здесь многим пожалуй стало интересно, как определить порядок функции однородного уравнения? Вопрос достаточно уместен, а ответ на него следующий: в правую сторону подставляем вместо функции и аргумента значение t*x, t*y. При упрощении получают параметр «t» в определенном степени k, его и называют порядком уравнения. В нашем случае «t» сократится, что равносильно 0-м степени или нулевом порядке однородного уравнения. Далее в правой стороне можем перейти к новой переменной y=zx; z=y/x . При этом не забываем выразить производную «y» через производную новой переменной. По правилу части находим Уравнения в дифференциалах примет вид Совместные слагаемые в правой и левой части сокращаем и переходим к дифференциальному уравнению с разделенными переменными. Проинтегрируем обе части ДУ Для удобства дальнейших преобразований постоянную сразу вносим под логарифм По свойствам логарифмов полученное логарифмическое уравнение эквивалентно следующему Эта запись еще не решение (ответ), необходимо вернуться к выполненной замене переменных Таким образом находят общее решение дифференциальных уравнений. Если Вы внимательно читали предыдущие уроки, то мы говорили, что схему вычисления уравнений с разделенными переменными Вы должны уметь применять свободно и такого рода уравнения придется вычислять для более сложных типов ДУ.

Пример 2. Найти интеграл дифференциального уравнения Решение:Схема вычислений однородных и сводных к ним ДУ Вам тепер знакома. Переносим переменную в правую сторону уравнения, а также в числителе и знаменателе выносим x2, как общий множитель Таким образом получим однородное ДУ нулевого порядка. Следующим шагом вводим замену переменных z=y/x, y=z*x, о которой постоянно будем напоминать, чтобы Вы ее заучили После этого ДУ записываем в дифференциалах Далее преобразуем зависимость к дифференциальному уравнению с отделенными переменными и интегрированием решаем его. Интегралы несложные, остальные преобразования выполнены на основе свойств логарифма. Последнее действие включает экспонирования логарифма. Наконец возвращаемся к исходной замене и записываем решение дифференциального уравнения в форме Константа «C» принимает любое значение. Все кто учится заочно имеют проблемы на экзаменах с данным типом уравнений, поэтому просьба внимательно посмотреть и запомнить схему вычислений.

Решение уравнений и неравенств

Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x, y, z.

Примеры решений уравнений и неравенств:

$$\frac{5}{12}+\frac{x}{6}=\frac{x}{4}+\frac{1}{3}$$ (решить уравнение)

$$x^2+12x+36=0$$ (решить уравнение)

$$\left(x+8\right)^2=x^2+8$$ (решить уравнение)

$$\left(x^2+\frac{1}{x^2}\right)+\left(x+\frac{1}{x}\right)=4$$ (решить уравнение)

$$\frac{19-x^2-4x}{49-x^2}(решить неравенство)
$$\frac{x}{3}+\frac{2x-1}{5}>2x-\frac{1}{15}$$ (решить неравенство)

$$\frac{\left(x-1\right)^2\left(x+7\right)\left(x+3\right)^3}{x^2+6x+9}\ge 0$$ (решить неравенство)

Решение дифференциальных уравнений

Решить онлайн дифференциальные уравнения — просто! Искусственный интеллект постоянно развивавется. Нашим
специалистам удалось научить его решать различные математические задачи. Например, стали доступны такие
раздеолы, как решение онлайн дифференциальных уравнений или производная функции онлайн.

На нашем сайте вы можете решить любое дифференциальное уравнение используя Калькулятор
за пару секунд.
Пользоваться калькулятором просто. Начальные условия вводите как обычные условия. Порядок не важен.
Чтобы
ввести условие, нажмите «+условие»

Например:

Условие 1: y’=y+x

Условие 2: y(0)=1

Нажав кнопку Решить вы получите подробное решение дифференциальных
уравнений.

Упрощение выражений, раскрытие скобок, разложение многочленов на множители

Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.

Примеры:

$$x^4+x^2a^2+a^4$$ (разложить на множители)

$$\frac{6x^3-24x^2}{6x^3}$$ (разложить на множители)

$$(5x-2y^2)(5x+2y^2)$$ (раскрыть скобки)

$$(a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)$$ (раскрыть скобки)

$$\frac{a^3-8}{a^2+2a+4}$$ (раскрыть скобки)

$$\frac{\left(\frac{2a}{2a+b}-\frac{4a^2}{4a^2+4ab+b^2}\right)}{\left(\frac{2a}{4a^2-b^2}+\frac{1}{b-2a}\right)}+\frac{8a^2}{2a+b}$$ (упростить выражение)

$$\frac{1-\sin ^4\left(x\right)-\cos ^4\left(x\right)}{2\sin ^4\left(x\right)}+1$$ (упростить выражение)

$$\left(\sqrt{a}-\frac{a}{\sqrt{a}+1}\right)\cdot \frac{a-1}{\sqrt{a}}$$ (упростить выражение)

Решение интегралов

Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:∫ f(x) — для неопределенного интеграла;ba∫ f(x) — для определенного интеграла.

В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.

Примеры вычислений интегралов:

$$\int \left(\frac{x^4}{x^3-6x^2+11x-6}\right)dx$$ (найти интеграл функции)

$$\int \left(\sqrt{x\sqrt{x\sqrt{x}}}\right)dx$$ (решить интеграл)

$$\int \left(\left(x^2+3x+5\right)\cos 2x\right)dx$$ (вычислить интеграл)

$$\int \left(\frac{x+\arccos ^2\left(3x\right)}{\sqrt{1-9x^2}}\right)dx$$ (решить интеграл)

$$\int _1^{e^3}\left(\frac{1}{x\sqrt{1+\log \left(x\right)}}\right)dx$$ (найти интеграл функции)

$$\int _{\frac{\pi }{6}}^{\frac{\pi }{3}}\left(\sin 6x\sin 7x\right)dx$$ (решить интеграл)

$$\int _{+\infty }^{-\infty }\left(\frac{1}{\left(x^2+1\right)\left(x^2+4\right)}\right)dx$$ (решить интеграл)

$$\int _1^2\left(x^2+\frac{1}{x}+\frac{1}{x^3}\right)dx$$ (вычислить интеграл)

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Сервис по настройке
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: